
Cycle Checker
Jens Coldewey

Coldewey Consulting
Uhdestr. 12

D-81477 München
Germany

Tel: +49-89-74995702; Fax: +49-89-74995703
email: jens_coldewey@acm.org; http://www.coldewey.com

Copyright © Jens Coldewey, Coldewey Consulting, 1999. All rights reserved.
Permission granted to reprint for the proceedings of EuroPLoP 99

CycleChecker

There are algorithms that do not work on object networks if they contain
cycles,

therefore, implement a special Cycle Checker object to detect cyclic
structures

A local telephone switching system usually provides features to redirect
your phone. If you are working in a testing lab, for example, you can
redirect your own extension into the testing room so you don’t miss any
call. Many systems also allow to forward redirected calls too. If the last
person leaves the testing room, she may redirect the testing room
extension to the receptionist, so she gets all the calls, including yours.

Programming these exchanges, you have to take care that the users don’t
create redirection loops. If they could, their calls would be forwarded for
ever and may even crash the complete system.

Abstractly, this pattern deals with networks of objects that need to be
acyclic. The objects form the nodes of the network while the references
between the objects form the edges. When manipulating these edges you
need to prevent that cycles evolve. Cycles may be cycles direct with only
two objects involved or they may be indirect with an arbitrary number of
objects involved.

Thumbnail

Context

Example

So how do you check an object network for cycles?

• Cycles may be arbitrarily complex. In fact, trivial cycles are rare,
because users tend to avoid cycles themselves. The cycles happening
in realistic situation often involve several steps and are hard to
recognize at all.

• The cycle check should not change the state of the nodes. Because the
nodes are usually first class domain objects, changes of their state
may trigger further actions, such as user interface updates, or database
updates. What sounds like a performance problem at first sight may
escalate. While superfluous interface updates “only” annoy the users,
superfluous database updates set unneeded locks and thus limit
scalability. If the cycle check involves a large share of the objects it
may even block the complete system.

• Several cycle checks may run concurrently. When the application has
several threads, more than one thread may check for a cycle at a given
time. In this scenario, one thread may change the network while
another checks for cycles. This may cause checks to fail, because the
thread may insert a new circle in areas of the network that are already
checked. If the cycle checker changes the checked objects you may
also run into problems.

• The network may contain objects from different inheritance trees, so
it is hard to assign the responsibility to a single class. Obviously all
the objects should provide a uniform protocol for network
manipulation, but this protocol is not necessarily derived from a
common superclass. If a common superclass exists, it may still not be
responsible for cycle checking. Consider a hierarchical file system
modeled with a Composite structure [GHJV95]. This structure is free
of cycles by definition. The only way to introduce a cycle is to define
UNIX style links modeled with a special leaf node. The only class
that should know about these links inside the class hierarchy is the
link class. However, a cycle may contain any number of other files.
Hence, the cycle check should not be the responsibility of a node
class.

Therefore, assign the responsibility to check for cycles to a separate
object, the Cycle Checker. This objects traverses the complete object
network reachable from a starting node using the common Node
Interface. It also maintains a set of visited nodes. When visiting a
node, the Cycle Checker tests, whether the node already is an element
of the set. If it is, the object has detected a cycle, terminates and acts
accordingly. If it isn’t, the object registers the node in the set and carries
on visiting. Because the network is acyclic in this scenario, the checker

Problem

Solution

Forces

eventually has visited all nodes reachable from its starting point and thus
ends.

• The communication between the CycleChecker and the Node
consists of the single method successor. Because most node objects
provide a method like this anyhow, the network can be
heterogeneous. In typed languages, such as Java or C++, all node
classes have to implement at least a common interface to manipulate
the network – not a very hard restriction.

• The CycleChecker crawls through all reachable nodes and thus
finds every cycle, regardless of the number of hops it takes. However,
in large networks this may take some time. The performance penalty
depends on the network structure and implementation issues, so I am
going to discuss this topic in the implementation section.

• The Nodes do not know about the CycleChecker at all. Particularly
the CycleChecker does not call any method of the Node that
changes its external state. Therefore it triggers neither unwanted
updates nor provokes any other action.

• Concurrently running checks do not interfere one another. Because
the checks do not change the nodes, they are fully reentrant.
However, you have to take care if the object network changes while
the Checker crawls through it. In this scenario two different processes
are well able to construct a cycle after running checkers and both
checkers won’t take any notice. There are two different approaches to
prevent this, the pessimistic and the optimistic approach. The
pessimistic approach locks all nodes that have been visited against
change until the checker finishes. However, locking is expensive and
only feasible if you can control modifications of the nodes. The
optimistic approach uses the Observer pattern [GHJV95]. The

Consequences

successors :
Collection<Node>

NodeInterface

ConcreteNode

check: aNode
check: aNode

visitedNodes: aSet

CycleChecker

check: aNode visitedNodes: aSet
(aSet includes: aNode)

ifTrue: [ExcCycleDetected signal]
ifFalse: [

aSet add: aNode.
aNode successors do: [:node |

self check: node visitedNodes: aSet]]

check: aNode
self check: aNode
visitedNodes:

Set new

checker registers at a node when it is visited. When the successors of
a node change, the node notifies all registered checkers. The checkers
restart all or a part of the check. While the pessimistic approach is
guaranteed to end after a certain time, the optimistic approach runs
until a check finishes undisturbed. Another drawback of the
optimistic approach is its runtime complexity. The Checker registers
with all the nodes it visits, introducing a new runtime dependency
with all of them. You have to maintain these dependencies through
the whole lifetime of the Checker and you have to guarantee that the
events do not start to bounce between the different threads, resulting
in an indefinite burst of update messages.

• Improving Performance: The time the spell checker needs to certify
absence of circles is proportional to the number of paths through the
network from the start node. This is ok for mainly hierarchical
structures, such as file systems. However, in the worst case that
means that the time grows with the square of the number of nodes – a
behavior that significantly limits scalability. A small addition to the
presented CycleChecker decreases performance complexity
significantly: The CycleChecker object stores all nodes that have
been certified during the current check in an instance variable.
Therefore, if a thread leads to an area of the network that just has
been tested, the CycleChecker can stop and carry on with the next
thread. Because with this small addition every node in the network is
at most visited once, the time is proportional to the size of the
network instead of its square.

• Stack Consumption: The CycleChecker works itself recursively
through all the possible threads in the network. The nesting depth is
as deep as the longest thread in the network. If the network is strongly
forked, you can estimate pretty safely that this is proportional to some
logarithm of the number of nodes. The best example of a network like
that is a tree. However, if there are long runs nearly without forks the
nesting depth may be in the magnitude of the number of nodes
resulting in an enormous greed for stack memory. Luckily, the case
with the worst stack behavior also is the case with the least need for
the stack. The CycleChecker uses the stack to manage the forks in
the network. Therefore, you can iterate over unforked nodes using a
loop, while you use recursion only if the network forks. With this
improvement, the stack behavior is worst, if every fork only has two
branches, leading to a maximum depth of log2 of the number of nodes
in the network – even for extremely large networks a number
significantly below hundred.

Implementation

• Networks stored in a database: Be careful when you use this pattern
with a network stored in a database – or even worse distributed across
the world. In this scenario every access of a node needs significant
time. A few milliseconds for a database access or even a second for
an Internet access. This may take up to minutes or even hours for
large networks. Hence, you cannot use the CycleChecker to ensure
consistence in advance. Still you may use one of the variants,
described below.

The following Smalltalk code shows a complete Cycle Checker
combined with an Iterator (see below):

recursiveDoWithCycleCheck: aBlock
^self recursiveDoWithCycleCheck: aNode

checkedNodes: Set new
visitedNodes: Set new.

recursiveDoWithCycleCheck: aBlock
checkedNodes: checkedNodesSet
visitedNodes: visitedNodesSet

| result |
(checkedNodesSet includes: self)

ifTrue: [^self].
(visitedNodesSet includes: self)

ifTrue: [ExcCycleDetected signalWith: self].
visitedNodesSet add: self.

"Evaluate the Block"
result := aBlock value: self.

self successors do: [:node |
node recursiveDoWithCycleCheck: aBlock
checkedNodes: checkedNodesSet
visitedNodes: visitedNodesSet copy].

checkedNodesSet add: aNode.
^result

Please observe, that the nodes visited in the current path are passed by
copy while the checked nodes are passed by reference. This ensures that
reunions of two different threads are not interpreted as cycles, because
the visited nodes are local to the current thread.

Iterating Cycle Checker: If you cannot prevent cycles for performance
reasons, you may at least want to protect actions on the network from
crashing uncontrolled if they run into a cycle. Rather you want to fail
them in a defined manner, for example by throwing an exception.

The easiest way to do that is to combine the CycleChecker with an
Iterator pattern [GHJV95]. While the Iterator crawls through the network
to perform its task, it checks whether it has run into a cycle. The

Variants

Sample Code

following sample code shows the implementation of an internal Iterator1

using an Enumeration Method [Bec97, pp. 99]:
Collection>>doWithCycleCheck: aBlock

| visitedNodes |
visitedNodes := Set new.
^self do: [:aNode |

(visitedNodes includes: aNode) ifTrue: [
ExcCycleDetected signalWith: aNode].

visitedNodes add: aNode.
aBlock value: aNode
"In Java or C++ you would call a processItem
 method of the node instead of the value:, see
 [GHJV95, pp 267]"

].

The method augments the standard Smalltalk Iterator do: defined in the
Collection class in a class extension. Therefore the new feature
applies to all types of collections.

The main benefit of this variant is that you only check those nodes you
actually need to accomplish your task. For example if Iterator only
iterates one thread, it is sufficient to check this thread for cycles. This
may spare a lot of node accesses.

Please note that this solution defines no Cycle Checker class but stores
the information in a local variable of the method. This implies that the
method may be overzealous. It detects every double visit of an object as
cycle. This is correct if the iteration follows only one path through the
network – an assumption that is true most of the time. However, if you
traverse several paths you may reach the same node several times
without getting into a cycle. The figure shows an example. To manage
situations like this the Iterator has to have a notion of the path and adjust
the visitedNodes set if it switches to a new path.

Hop Counter: There are two preconditions for the pattern to work. It
must be possible to identify the nodes uniquely and the CycleChecker
must be able to transport the information from one node to the next. Both
preconditions are no limitation inside an object-oriented system.
However, when it comes to distributed networks, the preconditions may

1 [GHJV95] defines an internal Iterator as an Iterator that controls the iteration in contrast to an external

Iterator that leaves the control to the client, that “must advance the traversal and request the next element
explicitly from the iterator” (p. 260). Internal Iterators are more suitable to traverse complex object
structures, “because they define the iteration logic for you” (p. 261)

1

4

3/5

2

break. In this case you can use a minimized variant of the pattern.
Instead of storing a reference to every node, the CycleChecker just
counts the number of nodes it visits. If this counter exceeds a reasonable
number, the CycleChecker assumes that it has run into a circle. While
this technique detects a circle reliably, it may signal a circle, even if no
circle is present.

In the initial example of the telephone exchange you may check for
cycles at two different times. At first you may apply the pattern when the
user enters a redirection. If this leads to a cycle the command fails.

You may also accept every redirection and apply the Iterating variant of
the pattern: When a calls arrives you memorize every phone you redirect
the call to in a set. When the redirection graph meets a phone already in
the list you take some fallback action. For example you may cancel the
redirection completely or forward the call to the receptionist.

The CycleChecker is a well-known algorithm in Computer Science
and is described in many books about algorithms. For example Aho,
Hopcroft, and Ullman present it as “Test for Acyclicity” in [AHU83,
p. 221].

Unidraw, a graphical editor framework, uses this pattern while finding a
data flow through a graph to prevent running into a cycle [Vli90, pp. 86]

Most Internet email servers use the Hop Counter variant to detect
forwarding loops.

Knuth describes an algorithm for topological sort that outputs elements
found to be acyclic [Knu97, pp. 265]. When all output is done he checks
whether there are still nodes left and thus detects a cycle.

Acknowledgements
Neil Harrison and Bob Hanmer provided known uses, Christa Schwanninger helped me to
find the Aho, Hopcroft Ullman reference, and John Vlissides provided is Ph.D. thesis as
known use. He also shepherded this paper for EuroPLoP and helped to improve the paper
significantly. Alwine Brem of Generali in Munich suggested the Example Resolved section.
Andreas Rüping suggested several structural improvements and Kevlin Henney pointed me to
Kent Beck’s work. Finally, the participants of the demo writer’s workshop of EuroPLoP’99
gave several important hints. Thanks to you all.

Known Uses

Example
Resolved

References

[ABW98] Sherman Alpert, Kyle Brown, Bobby Woolf: The Design Patterns Smalltalk
Companion; Addison-Wesley, Reading, Massachusetts, 1998; ISBN 0-201-
18462-1

[AHU83] Alfred Aho, John Hopcroft, Jeffrey Ullman: Data Structures and Algorithms;
Addison-Wesley, Reading, Massachusetts, 1983; ISBN 0-201-00023-7

[Bec97] Kent Beck: Smalltalk Best Practice Patterns; Prentice Hall, Eaglewood Cliffs,
New Jersey, 1997; ISBN 0-13-476904-X

 [GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns -
Elements of Reusable Object-Oriented Software; Addison-Wesley, Reading,
Massachusetts, 1995; ISBN 0-201-63361-2

[Knu97] Donald E. Knuth: The Art of Computer Programming - Volume 1: Fundamental
Algorithms - Third Edition; Addison-Wesley, Reading, Massachusetts, 1997; 0-
201-89683-4

[Vli90] John Vlissides: Generalized Graphical Object Editing; Ph.D. thesis, Stanford
University, June 1990. (Available as Stanford University Computer Systems
Laboratory Technical Report CSL-TR-90-427.)

